Separation of 24-Methylenecycloartanol from Cycloartenol Via a Chemical Method
 Shoei-Sheng Lee, Liang-Hwa Young, and K. C. Wang
 J. Nat. Prod., 1992, 55 (5), 644-648• DOI:
 10.1021/np50083a014 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50083a014 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

SEPARATION OF 24-METHYLENECYCLOARTANOL FROM CYCLOARTENOL VIA A CHEMICAL METHOD

Shoei-Sheng Lee,* Liang-Hwa Young, and K.C. Wang
School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China

Abstract

A simple chemical method for the separation of 24 -methylenecycloartanol [2] from a mixture of cycloartenol [1] and 2 has been developed. The method consists of five reaction steps: converting the 3-OH into 3-0-tetrahydropyran (3-OTHP), hydroboration of the double bond, mesylation, regeneration of the double bond, and removal of the protecting group. This approach is practical for large scale separation.

Cycloartenol [1] and 24-methylenecycloartanol [2] are two major triterpene alcohols present as ferulate esters in rice bran oil (1). Because of structural resemblance, these two compounds are difficult to separate via conventional tlc or cc. Due to their abundance and unique structures, both compounds having a cyclopropyl moiety at C $9, \mathrm{C}-10$, and $\mathrm{C}-19$, they are interesting substrates for microbial transformation. Thus, separation of these two compounds is often an obligatory preliminary task. Several attempts to separate these two materials, without modification of the structures, via Si gel columns were unsuccessful. We have developed the following method for separating $\mathbf{2}$ from mixtures of $\mathbf{1}$ and 2.

RESULTS AND DISCUSSION

The key strategy for separating 2 from 1 was ro convert them into separable compounds, then regenerate $\mathbf{2}$ after separation of the derivatives. Compound $\mathbf{1}$ contains a trisubstituted double bond while 2 contains an exomethylene group. Upon hydroboration of the mixture, a secondary alcohol was produced from 1 and a primary alcohol was produced from 2. The polarity difference between these two alcohols allows their separation.

Mixtures of ferulate esters of $\mathbf{1}$ and 2 are obtained directly via recrystallization ($\mathrm{MeOH} / \mathrm{CHCl}_{3}$) of oryzanol, an ester mixture of triterpenes and steroids from rice brans (1). The ferulates show the α, β-trans protons at $\delta 6.27$ and 7.58 ($J_{\text {trans }}=15.9 \mathrm{~Hz}$), C19 protons at $\delta 0.59$ and 0.34 ($J_{\mathrm{gem}}=4.3 \mathrm{~Hz}$), C-24 protons of 1 at $\delta 5.09(\mathrm{t}, J=6.6$ Hz), C-31 protons of 2 at $\delta 4.70(\mathrm{~d}, J=2.6 \mathrm{~Hz})$, and characteristic carbon signals of the cyclopropyl group at $\delta 20.1$ (s, C-9), 26.2 (s, C-10), and 29.8 (t, C-19). This mixture, after basic hydrolysis ($3 \mathrm{NKOH} / \mathrm{EtOH}$, reflux), yielded a $1: 1$ mixture of 1 and 2 calculated from the integration of the olefinic proton signals. Without further separation, the alcohol fraction was protected with THP (2). After partial purification on a Si gel column, hydroboration (diborane/THF, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$) (3) was performed on the mixture. The reaction gave two products, 5 and 6 , which were separable by tle and by Si gel cc.

The secondary alcohol 5 derived from 1-THP shows hydroxyl absorption at 3450 cm^{-1} and a fragment ion peak \mathbf{A} at $m / z 444$ and the base peak \mathbf{B} at $\mathrm{m} / \mathrm{z} 85$ in the eims. The ${ }^{13} \mathrm{C}$-nmr spectrum shows an additional oxygenated methine signal at $\delta 77.0$, in addition to $\mathrm{C}-3(\delta 87.8)$ and $\mathrm{C}-1^{\prime}(\delta 101.8)$ signals, which also support its structure. The primary alcohol 6 obtained from 2 -THP shows a hydroxy absorption at $3490 \mathrm{~cm}^{-1}$. Its eims spectrum shows the base peak B at $m / z 85$ supporting the THP moiety, and a fragment ion \mathbf{C} at $m / z 458$. In the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of $\mathbf{6}$, the signals of the hydroxymethylene protons appear at $\delta 3.55$ ($\mathrm{br} \mathrm{d}, J=3.2 \mathrm{~Hz}$), and the protons at $\mathrm{C}-19$ of the cyclopropyl ring appear at $\delta 0.54$ and 0.29 as an AB spin system ($J=4.1 \mathrm{~Hz}$). The

$$
\begin{array}{ll}
\mathbf{1} & \mathrm{R}^{1}=\mathrm{H} \\
\mathbf{1} \text { ferulate } & \mathrm{R}^{1}=\mathrm{R}^{\prime} \\
\mathbf{2} & \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{\prime \prime} \\
\mathbf{2} \text { ferulate } & \mathrm{R}^{1}=\mathrm{R}^{\prime}, \mathrm{R}^{2}=\mathrm{R}^{\prime \prime} \\
\mathbf{3} & \mathrm{R}^{1}=\text { THP } \\
\mathbf{4} & \mathrm{R}^{1}=\text { THP }, \mathrm{R}^{2}=\mathrm{R}^{\prime \prime}
\end{array}
$$

$$
\begin{array}{ll}
5 & \mathrm{R}=\mathrm{OH} \\
6 & \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} \\
7 & \mathrm{R}=\mathrm{OMs}^{2} \\
8 & \mathrm{R}=\mathrm{CH}_{2} \mathrm{OMs}
\end{array}
$$

11
$9 \mathrm{R}=$

10

${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum shows additional oxygenated methylene signals at $\delta \mathbf{6 3 . 5}$ and $\delta 62.6$ (C-5' of THP). These data confirm the structure of 6 .

Treatment of 5 and 6 with mesyl chloride in pyridine (4) yielded mesylates 7 and 8 , respectively. The ${ }^{1} \mathrm{H}$-nmr spectra of 7 and $\mathbf{8}$ both show the characteristic methyl signal

of the mesyl group at $\delta 2.97$. The β-elimination of the mesyl group of $\mathbf{8}$ with basic alumina in refluxing $\mathrm{CHCl}_{3}(5)$, followed by removal of the THP protecting group with HOAc-THF- $\mathrm{H}_{2} \mathrm{O}$ (4:2:1) (2), gave 2 as the sole product in 65% yield. This product was identical (mp, ms, nmr) with reported data for 24-methylenecycloartanol (6). The same treatment of 7 gave a mixture containing 1 as the major component accompanied by two minor inseparable byproducts, 9 and 10, in a ratio of 10:2:1 from integration of the corresponding olefinic proton signals at $\delta 5.08$ (br t, $J=6.6 \mathrm{~Hz}, \mathbf{1}$), 5.34 (m, 9), and 4.65 ($\mathrm{br} \mathrm{s}, \mathbf{1 0}$). The structures of 9 and $\mathbf{1 0}$ were tentatively proposed and supported by a ${ }^{13} \mathrm{C}$-nmr spectrum of the mixture which showed three sets of olefinic carbons each composed of two carbon signals, the major peaks being at $\delta 130.7$ (s, C-25, 1) and 125.3 (d, C-24, 1). The other two sets of signals appeared at $\delta 138.3$ (d, C-24, 9), 125.9 (d, C-23, 9), 146.2 (s, C-25, 10), and 109.5 ($\mathrm{r}, \mathrm{C}-26,10$). Hydrogenation of the mixture led to compound $\mathbf{1 1}$ as the sole product. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum of $\mathbf{1 1}$ was almost superimposable with the carbon chemical shifts of the ring skeleton of cy -cloart-24-ene-3 $\beta, 26$-diol (7) and with the side chain of cholestan- 3β-ol (8). Compound 11 was thus identified as cycloartanol, and these results support the suggested structures of 9 and 10.

Formation of 9 may be rationalized by nonregiospecific elimination of the mesyl group which produced either Δ^{23} as in 9 or Δ^{24} as in 1 . Compound 10, however, could be obtained via delocalization of the carbonium ion from $\mathrm{C}-24$ to $\mathrm{C}-25$ which, after deprotonation, yielded either $\mathbf{1}\left(\Delta^{24}\right)$ or $10\left(\Delta^{25}\right)$.

This facile approach can be scaled up and is practical to separate 24 -methylenecycloartanol [2] from oryzanol. Although pure cycloartenol [1] has not been separated from the mixture of 9 and $\mathbf{1 0}$, cycloartanol [11], the product after hydrogenation, is also an interesting substrate for microbial transformation studies.

EXPERIMENTAL

General experimental procedures.-Oryzanol was supplied by Dr. Hsien-Jer Chen, Food Industry Research and Development Institute, Hsinchu, Taiwan. Optical rotations were measured on a JASCO DIP-181 Digital Polarimeter. Ir spectra were recorded on a Perkin-Elmer 1760-X Infrared FT Spectrometer. Nmr spectra were recorded on a Bruker AC-80 or AM-300 instrument using the solvent peak as reference standard (in $\mathrm{CDCl}_{3}, \delta 7.24 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} \mathrm{nmr}$ and 77.0 ppm for ${ }^{13} \mathrm{C} \mathrm{nmr}$). Mass spectra were taken on a Finnigan Mat 4500 series GC/MS spectrometer.

Mixture of cycloartenol [1] and 24-methylenecycloartanol \{2].-To oryzanol (40.0 g) dissolved in a minimum of warm CHCl_{3} was added MeOH dropwise till turbidity occurred. The solution was kept at ambient temperature, and the resulting crystals were filtered. This process was repeated
twice to yield 7 g of colorless crystals, the ferulates of 1 and 2 . The crystals were refluxed in 2.5 N alcoholic $\mathrm{KOH}(600 \mathrm{ml})$ for 3 h . The cooled reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{ml})$, acidified with concentrated HCl to pH 2 , and extracted with $\mathrm{CHCl}_{3}(400 \mathrm{ml} \times 3)$. The CHCl_{3} layer was washed with 8% $\mathrm{NaHCO}_{3}(300 \mathrm{ml} \times 3)$ to remove ferulic acid and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed to give 4.8 g of a mixture containing 1 and 2 (99% yield).

Preparation of 3 (1-THP) and 4 (2-THP).—The mixture of 1 and 2 (4.0 g , about 9.24 mmol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{ml})$ was mixed with dihydropyran (DHP, 2.2 ml) and $p-\mathrm{TsOH}(125 \mathrm{mg})$ (2). The reaction mixture was stirred at room temperature for 1 h , then diluted with an equal volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $1 \% \mathrm{KOH}(120 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml} \times 2)$ to remove $p-\mathrm{TsOH}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to a yellowish viscous residue. The residue was chromatographed on a Si gel column ($150.0 \mathrm{~g}, 70-$ 230 mesh) eluted with 2% EtOAc in hexane to give a mixture of $\mathbf{3}$ (1-THP) and $\mathbf{4}$ ($\mathbf{2}-\mathrm{THP}$) ($4.5 \mathrm{~g}, \mathbf{9 4 \%}$ yield).

Preparation of 5 and 6.-To the THP analogues of 1 and $2(4.5 \mathrm{~g}$, about 8.70 mmol), dissolved in freshly distilled THF (50 ml) in a $100-\mathrm{ml}$ round-bottomed flask, was slowly added $1.0 \mathrm{M} \mathrm{B}_{2} \mathrm{H}_{6}$ in THF (7.5 ml) in an ice bath (3). The reaction mixture was stirred for 1 h , and $3 \mathrm{~N} \mathrm{NaOH}\left(4 \mathrm{ml}\right.$) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ $(2.5 \mathrm{ml})$ were added. The reaction was continued for another 1 h at $30-50^{\circ}$ with stirring. The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(90 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml} \times 3)$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give 4.2 g of residue which showed two spots by tle [Si gel, $R_{f} 0.41,5: R_{f}$ $0.35,6$; solvent system $\mathrm{Me}_{2} \mathrm{CO}$-hexane (1:4)]. These two spots were separated via a Si gel column (160 g) eluted with $1-2 \%$ of $\mathrm{Me}_{2} \mathrm{CO}$ in hexane to yield 1.56 g of 5 and 1.67 g of $6(70 \%$ total yield).

3-O-Tetrabydropyranyl-24-bydroxycycloartanol [5].-Mp 124-126 ; ir ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v max 3450, 3040,2950 (s), 2875 (s), 1475, 1460, 1455, 1385, 1370; eims m/z (rel. int.) [M-DHP] ${ }^{+} 444$ (5), ($\left[\mathrm{M}-\mathrm{DHP}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 426,10$), 411 (5), 383 (6), 304 (10), 203 (10), 175 (14), 135 (12), 121 (15), 107 (18), 95 (25), $85(\mathrm{C}, 100) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 101.9(\mathrm{~d}, \mathrm{C}-2$ in THP), 87.8 (d, C-3), 77.0 (d, C-24), $62.6\left(\mathrm{t}, \mathrm{C}-6{ }^{\prime}\right.$ in THP); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.29$ and $0.54(\mathrm{H}-19, \mathrm{AB} \mathrm{q}, J=4.1 \mathrm{~Hz}), 4.64\left(\mathrm{~m}, \mathrm{H}-\mathrm{l}^{\prime}\right.$ in THP), 3.92 (m, H-3), $3.50-2.99(\mathrm{~m}, 3 \times \mathrm{H}, \mathrm{H}-6$ ' in THP and H-24).

3-O-Tetrabydropyranyl-24-bydroxymetbylycloartanol [6].-Mp 141-142 ; ir ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v max 3490 (m), 3040 (w), 2950 (s), 2875 (s), 1475 (m), 1462 (br m), 1445 (w), 1385 (m), 1370 (br m); eims m / z (rel. int.) [M DHP] $^{+} 458(5), 441(6), 425(7), 318(10), 203(8), 175(15), 135(10), 121(12), 107$ (14), $95(35), 85(\mathrm{C}, 100)$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 0.29$ and $0.54(\mathrm{H}-19, \mathrm{ABq}, J=4.1 \mathrm{~Hz}), 4.64\left(\mathrm{~m}, \mathrm{H}-1^{\prime}\right.$ in THP), $3.93(\mathrm{~m}, \mathrm{H}-3), 3.55(\mathrm{brd}, J=3.2 \mathrm{~Hz}, \mathrm{H}-31), 3.57-3.00\left(\mathrm{~m}, 2 \times \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right.$ in THP); ${ }^{13} \mathrm{C} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 101.8\left(\mathrm{~d}, \mathrm{C}-2^{\prime}\right.$ in THP), $87.8(\mathrm{~d}, \mathrm{C}-3), 63.8\left(\mathrm{t}, 24-\mathrm{CH}_{2} \mathrm{OH}\right), 62.6\left(\mathrm{t}, \mathrm{C}-6{ }^{\prime}\right.$ in THP).

Preparation of cycloartenol [1] and 24-methylenecycloartanol [2]. - Mesyla-tion.-To $5(160 \mathrm{mg}, 0.30 \mathrm{mmol})$ dissolved in pyridine $(2.0 \mathrm{ml})$ was added mesyl chloride (0.3 ml) dropwise in an ice bath (4). The reaction mixture was stirred at 0° for 30 min and then at ambient temperature for 1 h . To the reaction solution was then added pyridine $-\mathrm{H}_{2} \mathrm{O}(2: 1)(0.15 \mathrm{ml})$. After stirring in an ice bath for $15 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ was added to the mixture and it was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml} \times 3)$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was dried over MgSO_{4} and evaporated to give 204 mg of residue, which was chromatographed on a Si gel column (10 g) eluted with $2-4 \% \mathrm{Me}_{2} \mathrm{CO}$ in hexane to give mesylate $7(180 \mathrm{mg}, 98 \%$ yield): ir ν $\max \left(\mathrm{KBr}, \mathrm{cm}^{-1}\right), 3040(\mathrm{w}), 2940(\mathrm{~s}), 2860,1470,1355$ (s), 1175 (s), 1115, 1022 (s), 976 (s); ${ }^{1} \mathrm{H} \mathrm{nmr} \delta$ $\left(\mathrm{CDCl}_{3}\right) 2.97\left(\mathrm{~s},-\mathrm{OSO}_{2} \mathrm{Me}\right), 0.54$ and $0.31(\mathrm{AB} \mathrm{q}, J=4.1 \mathrm{~Hz}, \mathrm{H}-19)$.

Similarly, compound $6(160.0 \mathrm{mg}, 0.295 \mathrm{mmol})$ was converted into mesylate $8(173.4 \mathrm{mg}, 95 \%$ yield): ir $\nu \max \left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3040(\mathrm{w}), 2940(\mathrm{~s}), 2870,1445,1378,1355$ (s), 1340 (br s), $1200(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ $\mathrm{nmr} \delta\left(\mathrm{CDCl}_{3}\right) 2.98\left(\mathrm{~s},-\mathrm{OSO}_{2} \mathrm{Me}\right), 0.55$ and $0.32(\mathrm{AB} \mathrm{q}, J=4.2 \mathrm{~Hz}, \mathrm{H}-19)$.
β-Elimination and deprotection.-Compound $\mathbf{8}(173.4 \mathrm{mg}, 0.28 \mathrm{mmol})$ dissolved in $\mathrm{CHCl}_{3}(8 \mathrm{ml})$ was mixed with $\mathrm{Al}_{2} \mathrm{O}_{3}$ (basic, 5.0 g) (5). The mixture was stirred under reflux for 2.5 h , and $\mathrm{Al}_{2} \mathrm{O}_{3}$ was removed by filtering. The alumina was washed with CHCl_{3}. The combined CHCl_{3} filtrate was evaporated and the residue was mixed with HOAc-THF- $\mathrm{H}_{2} \mathrm{O}(4: 2: 1)(6 \mathrm{ml})(2)$. The resulting suspension was stirred at 45° for 4 h , and the solvent was evaporated. The residue was purified via a Si gel column ($12 \mathrm{~g}, 230-400$ mesh) elured with $2-3 \%$ EtOAc in hexane to give 2 as the sole product ($80 \mathrm{mg}, 65 \%$ yield from 8).

In a similar manner, mesylate $7(180 \mathrm{mg}, 0.297 \mathrm{mmol})$ was converted into a mixture containing 1 and two minor products, 9 and 10 ($90 \mathrm{mg}, 71 \%$ yield).

24-Methylenecycloartanol [2].—Mp 121° [lit. (6) $118-120^{\circ}$]; ir ($\mathrm{KBr}, \mathrm{cm}^{-1}$) v max $3440(\mathrm{~m}), 3090$ (w), 3050 (w), 2970 (s), 2940 (s), 2875 (s), 1645 (m), 1470 (br m), 1380 (m), 1100 (m), 1050 (m), 1020 (m), $1000(\mathrm{~m}), 890\left(\mathrm{~s},=\mathrm{CH}_{2}\right)$; eims $\mathrm{m} / \mathrm{z}\left(\mathrm{rel}\right.$. int.) $[\mathrm{M}]^{+} 440\left(\right.$ calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}\right)(27),[\mathrm{M}-\mathrm{Me}]^{+} 425$ (30), 422 (58), 407 (38), 379 (22), 300 (56), 216 (38), 203 (49), 201 (27); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) 84.67$ (brd, $J=2.6 \mathrm{~Hz}, \mathrm{H}-31), 0.54$ and $0.30(\mathrm{ABq}, J=4.1 \mathrm{~Hz}, \mathrm{H}-19) ;{ }^{13} \mathrm{Cnmr}\left(\mathrm{CDCl}_{3}\right) 832.0(\mathrm{t}, \mathrm{C}-1), 30.5(\mathrm{t}, \mathrm{C}-$ 2), 78.8 (d, C-3), 40.5 (s, C-4), 47.2 (d, C-5), 21.1 (t, C-6), 28.1 (t, C-7), 47.9 (d, C-8), 20.1 (s, C-9),
26.2 (s, C-10), 26.0 (t, C-11), 35.6 (t, C-12), $45.4(\mathrm{~s}, \mathrm{C}-13), 48.9(\mathrm{~s}, \mathrm{C}-14), 33.0(\mathrm{t}, \mathrm{C}-15), 26.6(\mathrm{t}, \mathrm{C}-$ 16), 52.3 (d, C-17), 18.0 ($\mathrm{q}, \mathrm{C}-18$), 29.8 ($\mathrm{t}, \mathrm{C}-19$), 36.1 (d, C-20), 18.4 ($\mathrm{q}, \mathrm{C}-21$), 31.4 (t, C-22), 28.1 (t, C-23), $156.8(\mathrm{~s}, \mathrm{C}-24), 36.1(\mathrm{~d}, \mathrm{C}-25), 21.9$ (q, C-26), $22.0(\mathrm{q}, \mathrm{C}-27), 19.3(\mathrm{C}-28), 25.5(\mathrm{q}, \mathrm{C}-29)$, $14.0(\mathrm{q}, \mathrm{C}-30), 106.0(\mathrm{t}, \mathrm{C}-31)(7,8)$.

Cycloartanol [1].-The mixture of $\mathbf{1}, 9$, and $\mathbf{1 0}(9.5 \mathrm{mg})$ was catalytically hydrogenated over Pd / C ($5 \%, 10 \mathrm{mg}$) under $\mathrm{H}_{2}(1 \mathrm{~atm})$ at 25° overnight. The suspension, after filtering through a celite pad, was evaporated to give 9.3 mg of residue. The product 11, recrystallized from MeOH , gave the following: mp $66-67^{\circ}$; ir ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $v \max _{\max } 340(\mathrm{~m}), 3035(\mathrm{~m}), 2950(\mathrm{~s}), 2925(\mathrm{~s}), 2860(\mathrm{~s}), 1465(\mathrm{~m}), 1460(\mathrm{~m})$, $1450(\mathrm{~m}), 1440(\mathrm{~m}), 1380(\mathrm{~m}), 1370(\mathrm{~m}), 1095(\mathrm{~m}), 1043(\mathrm{~m}), 1020(\mathrm{~m}), 1003(\mathrm{~m}), 992(\mathrm{~m})$; eims m/z (rel. int.) $[\mathrm{M}]^{+} 428$ (calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}$) (2), $429(0.3), 413$ (3), 410 (3), 395 (5), 367 (3), 315 (2), 175 (16), 135 (18), 121 (25), 107 (31), $95(60), 71$ (27), $57(51), 43(100)$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.26$ (dd $J=$ $9.6,5.2 \mathrm{~Hz}, \mathrm{H}-3), 0.55$ and $0.31(\mathrm{AB} \mathrm{q}, J=4.4 \mathrm{~Hz}, \mathrm{H}-19) ;{ }^{13} \mathrm{Cnmr}\left(\mathrm{CDCl}_{3}\right) \delta 32.1(\mathrm{t}, \mathrm{C}-1), 30.5(\mathrm{t}, \mathrm{C}-$ 2), 78.9 (d, C-3), 40.5 (s, C-4), 47.2 (d, C-5), 21.1 (t, C-6), 28.2 (t, C-7), 47.9 (d, C-8), 20.1 (s, C-9), $26.0(\mathrm{~s}, \mathrm{C}-10), 26.0(\mathrm{t}, \mathrm{C}-11), 35.6(\mathrm{t}, \mathrm{C}-12), 45.4(\mathrm{~s}, \mathrm{C}-13), 48.8(\mathrm{~s}, \mathrm{C}-14), 33.0(\mathrm{t}, \mathrm{C}-15), 26.6(\mathrm{t}, \mathrm{C}-$ 16), 52.5 (d, C-17), 18.0 (q, C-18), 29.9 ($\mathrm{t}, \mathrm{C}-19$), $36.1(\mathrm{~d}, \mathrm{C}-20$), 18.4 ($\mathrm{q}, \mathrm{C}-21$), 36.5 (t, C-22), 24.1 (t, C-23), 39.6 (t, C-24), 28.0 (d, C-25), 22.4 ($\mathrm{q}, \mathrm{C}-26$), 22.8 ($\mathrm{q}, \mathrm{C}-27$), 19.4 (C-28), 25.5 ($\mathrm{q}, \mathrm{C}-29$), $14.0(\mathrm{q}, \mathrm{C}-30)$.

ACKNOWLEDGMENTS

We are grateful to NSC, R.O.C. , for support of this research under Grants NSC-78-0412-B002-14 and NSC-80-0412-B002-20 (to KCW).

LITERATURE CITED

1. T. Itoh, T. Tamura, and T. Matsumoto, J. Am. Oil Chem. Soc., 50, 300 (1973).
2. F.S. Alvarez, D. Wren, and A. Prince, J. Am. Chem. Sor., 94, 7823 (1972).
3. H.C. Brown and G. Zweifel, J. Am. Chem. Soc., 83, 2544 (1961).
4. S. Chandrasekaran and J.V. Turner, Synth. Commun., 12, 727 (1982).
5. V.I. Spitzin, I.E. Michailenko, and G.N. Pirogowa, J. Prakt. Chem., Ser. 4, 25, 160 (1964).
6. H. Itokawa, J. Kushida, and M. Fujita, Chem. Pharm. Bull., 18, 1276 (1970).
7. V. Anjaneyulu, K.H. Prasad, K. Ravi, and J.D. Connolly, Pbytochemistry, 24, 2359 (1985).
8. H.J. Reich, M. Jautelat, M.T. Messe, F.J. Weigert, and J.D. Roberts, J. Am. Chem. Soc., 91, 7445 (1969).
